2021年1月16日 星期六

每一項高新技術,或者我們俗稱的「黑科技」, 在它走出實驗室時備受追捧。但是當有企業正式為這 些技術找應用場景,把它們轉化成消費級產品時,大 家才意識到,也許這些技術在當前階段一般消費者還 無法普遍接受,或者說這些技術的普及速度遠遠低於 預期。本期筆者與大家盤點過去10年裏,初期期待過 高、實際卻沒能流行起來的「黑科技」。

姚剛

消費者不買單,意味着這項技術的應用沒有「錢景」。當 然,我們不能簡單地把購買產品的人數作為判斷一項技術實用性 的依據。這些在C端(消費者端)市場沒能流行起來的黑科技,為 了生存大多都調整戰略方向,轉而主攻B端(企業端)市場。有一 些技術並不是徹底「涼涼」,只是它們的發展和普及沒有預期火 爆,在長遠的未來也許還會繼續發展和成長。

NFC

'''''

NFC (Near Field Communication), 即近距離無線通訊技術(近場通信),是在 RFID(非接觸式射頻識別)技術的基礎上, 集合無線互聯技術研發而成的。它相比藍牙傳 輸更安全、相比紅外傳輸更快速,同時具備低 功耗的特點。

通過手機NFC綁定銀行卡,手機就可 以代替銀行卡進行交易支付了,相較於二 維碼支付,NFC支付安全性更高。2011年 伴隨谷歌推出Google Wallet服務,三星第

一個在自家的智能手機(Galaxy S2)上搭載NFC芯片,並且支持移 動支付。從此NFC功能逐漸成為高端智能手機的標配。由此開始, 移動支付產業鏈也在全球加速布局。

2014年蘋果推出手機支付服務Apple Pay, 2016年Apple Pay正 式登陸中國,配合KFC、麥當勞等大型商戶使用Apple Pay付款享受 優惠活動的推廣政策,同時各大銀行紛紛圍繞Apple Pay做優惠活 動,開啓了手機NFC近場支付元年。

門檻和失敗原因

目前市場上依舊有大量手機不支持NFC功能,此外,不同手機 廠商搭載的NFC芯片存在規格不統一,無法互通等行業標準化的窘 境。與此同時,類似二維碼掃碼支付、人臉支付這樣對手機硬件沒 有額外要求、更便捷的支付方式佔領市場,讓NFC技術在移動支付 領域失去原有的光芒。

目前市面上大多數智能標籤都是基於 NFC技術製作。我們可以給智能標籤 預設一些功能,然後通過手機識別 不同的NFC標籤,完成事先設定

目前NFC應用相對廣泛的領域要數

公交卡和門禁卡。用戶可以通過智能手

▲華為在手

提電腦上預

設 NFC 標

籤,命名為

ΓHuawei

Share] •

的功能。比如華為就在自家的筆記本上預先貼了一張NFC 標籤,只要用華為手機碰一下這個標籤就可以讓手機與筆 記本之間實現畫面投屏和數據傳輸等功能。

門檻和失敗原因

智能標籤的預先設置是個技術活。首先我們要挑選合 適標準的NFC標籤,並提前考慮好對這些標籤分別設置哪些 功能,需要我們對手機和各種軟硬件功能有深入的了解。這麼一 來,對於新手的門檻就太高了。

交門禁卡

機自帶的NFC軟件,將現有的公交卡或 者門禁卡複製到手機內,這樣手機裏就 有一張虛擬的公交卡或門禁卡。使用時也只需要在手機上調出這張 NFC虛擬卡片,與讀卡機輕輕一碰即可。

門檻和失敗原因

手機替代公交卡使用過程要求不僅手機需要支持NFC功能, 還需手機SIM卡支持「一卡通」,造成該技術一直只能在部分城 市使用。隨着二維碼識別技術的不斷完善,現在很多城市也 開始支持直接使用二維碼掃碼乘坐公共交通,大家對

NFC公交卡的需求也漸漸變弱。

▼一部3D打印機可製造 出多種物件

Beacon這個詞最近可能很少聽 到,它的核心原理是一種低功耗藍牙 (BLE) 通信技術。2013年蘋果還推 出了基於該技術的iBeacon。當時, 採用這項技術的企業的應用場景主要 是在線下零售行業,用於吸引周邊-

定範圍內的消費者和室內導航。

-家新開的餐飲店老闆 可以在店門口安裝Beacon信 號發射裝置,向周圍幾十米

到幾百米範圍發送信號。發 送的信號可以包括店舖優惠信息,發放優惠券、代金 券;店舖位置信息、排隊時間等;甚至可以進行消費 者滿意度調查。

門檻和失敗原因

首先,Beacon技術的應用不僅需要零售商安裝信 號發射裝置,同時,消費者使用的手機也需要具有 Beacon信號的接收能力。此外,這種應用場景的本質 是一種廣告推送,並不是所有的消費者都願意用手機 時被突如其來的廣告打擾。經過一段時間的市場驗 證,這個應用場景並沒有當初描述的那樣美好。而且 目前通過GPS定位技術和一些輔助算法,已經可以在 一定程度上替代它,並且幾乎沒有成本

室内GPS信號往往較 差,定位不精準,因此室 内導航仍沒有得到徹底解 決。通過Beacon技術支

持的數據定向廣播能力,可以向用戶提供周圍範 圍內的位置信息,引導用戶前往想去的室內地 點。這種應用場景在大型購物中心和大型建築內 的確有需求。

門檻和失敗原因

由於Beacon信號傳播距離非常有限,加上室 内多重牆體的阻擋,要滿足使用Beacon對大面積 的建築進行室內導航,需要安裝數量龐大的 Beacon基站,成本非常高昂。最近通過人工智能 和AR(增強現實)技術結合的室內導航解決方案 逐漸成熟,單純通過Beacon實現室內導航更加無 人問津。

▲很多人表示,並不喜歡戴着谷 歌眼鏡的人用攝像頭對着自己。

法新社

▲谷歌眼鏡的推出,給人們提供無限的想

像空間。

谷歌眼鏡

谷歌眼鏡是由谷歌在2012年首次推出的穿戴式增強現 實(AR)智能眼鏡,採用單眼HUD顯示技術。谷歌眼鏡像 是可佩帶式的智能手機,讓用戶可以通過語音指令,拍攝照 片,發送訊息及使用其他功能。Google Project Glass的重 量只有幾十克。2012年谷歌眼鏡在發布之初通過公布的產 品概念視頻,征服不少數碼愛好者。這款眼鏡集智能手機、 GPS、相機於一身,在用戶眼前展現實時信息,只要眨眼就 能拍照上傳、收發簡訊、查詢天氣路況等。用戶無須動手可上 網衝浪或者處理電子郵件。但在上市之後,市場反饋一直不理 想,2015年谷歌時任財務總監Patrick Pichette表示谷歌眼鏡 的未來並不樂觀,隨後公司停止了該項目。

門檻和失敗原因

谷歌眼鏡預售價1500美元,高昂的價格一下子把大批數碼愛好者拒 之門外。此外谷歌眼鏡缺少可以施展這項技術潛力的應用。在當時,谷 歌眼鏡還沒有建立豐富的軟件生態,廣告中描繪的應用場景並沒有在軟 件層面得到實現,讓用戶大失所望。此外,谷歌眼鏡的外形極為顯眼, 很多人表示並不喜歡有人一直用一個攝像頭對着自己,它涉嫌侵犯周圍 人的隱私。因此,當時很多公共場合禁止谷歌眼鏡的使用

3D打印機

3D打印技術與普通打印機工作原理基本相同,打印機內裝有固 體、液體或粉末等「打印材料」,與電腦連接後,通過電腦控制把 「打印材料 | 一層層疊加,最終把電腦上的3D模型藍圖變成實物。

3D打印機給我們描繪的美好未來是,只要擁有一台3D打印機, 不僅可以用它來打印3D模型,還可以用它打印任何我們需要的東 西,甚至可以用它打印一台新的3D打印機。這樣我們就不再需要購 買商品,因為我們可以自己製造一切。伴隨着這些市場變化,我們還 看到了市場上出現了例如:咖啡拉花打印機,3D煎餅打印機,3D建 築打印機等有趣應用場景。但至今3D打印機依舊只是小眾產品,並 沒有在大眾中得到普及。

門檻和失敗原因

雖然現在3D打印機的價格非常 親民,但廉價產品的打印精度不 高,用它打印出來的東西不夠精 細,並不能滿足大家對於最終效果 的期待。高精度的3D打印機和耗材 的價格依舊昂貴。3D打印機的操作 方法需要一定時間的學習和熟悉, 有一定的使用門檻,並不是所有人 有3D建模的能力。此外,它也有一 定的安全風險,曾經就有一些人利 用3D打印機打印槍支等危險 品,引起不小的社會風波。

總結發現很多技術在推出 之初,往往會被誤判為消費電子 市場的風口技術,人們期待這些技術 轉化的消費電子產品能成為人手一台 的必備品,但現實並非如此。在轉戰 企業級市場後,它們多少都找到了一 些生存空間。由此可見,也許注定有 些技術只能成為生活的一小部分,也 許有些技術注定只能服務一小部分 人,也許有些技術更適合企業而不適 合個人。

編者註:本文言論僅代表作者個人觀點