國產互聯網星座組網

北斗系統迭代關鍵期

▲去年12月5日,千帆極軌03組衛星發射 升空,「千帆星座|在軌衛星數量增至

公司發射了54顆「千帆星座」極軌互聯

依照計劃,中國這兩大互聯網星座

星提供多元業務融合服務。星網星

的歷史。

座將發射約1.3萬顆低軌通信衛星

完成組網。依照未來五年內完

成互聯網星座約10%的部

署,2025年中國衛星互聯

網的發射數量將創造新

龐之浩表示,

2025年還將是我國

經過多年籌備,中國衛

星互聯網在2024年啟動組

網。上海垣信衛星科技有限

54顆。

攻關

2025年 中國航天 發射重點

長征八號 運載火箭首飛

「輕舟 |貨運飛船 有望首飛

• 它採用一體化單艙構型, 貨艙空間27立方米,上行 貨物運力可達2噸,可搭 載航天員生活物資、科學 實驗設備、科學載荷等

• 其近地軌道 運載能力約 為7噸,700 千米高太陽 同步軌道運 載能力不低 於 6.4 噸, 有望在發射 巨型低軌互 聯網衛星中 發揮重要作

天問二號發射

● 中國開啟首次小行星採樣返回計劃。用於 實施近地小行星2016HO3 取樣返回和小行星 帶中的主帶彗星 311P 環 繞 探 測任務。

「微笑! 天文衛星 將升空

• 由中國與 歐洲合 作,其科學目標是探測 太陽風一磁層相互作用 的大尺度結構和基本模 式,認知地球亞暴整 體變化過程和活動周 期,探索日冕物質 抛射事件驅動的 磁暴發生和發 展。

大公報記者 劉凝哲整理

科

學裝

收官

有

望

開

啟

最

作為中

國建設科技

礎設施,大科學裝置近年來不

照計劃有望在2025年建成。

斷加大布局建設。在2025年

「十四五 | 規劃的收官之年,多個 大科學裝置即將開啟「收穫期」。依 照計劃,高能同步輻射光源(HEPS)、 江門中微子實驗(JUNO)以及聚變堆主機 關鍵系統綜合研究設施(「夸父|CRAFT)依

強國的必要基

HEPS於2019年6月啟動建設,建設周期6.5

年。建成後,HEPS可發射比太陽亮度高1萬億倍

的光,將是世界上亮度最高的第四代同步輻射光源

之一,也將是中國第一台高能量同步輻射光源,使

中國躋身為世界三大第四代高能同步輻射光源所在

地之一。依照計劃,HEPS有望在2025年完成建 設,面向航空航天、能源環境、生命醫藥等領域用

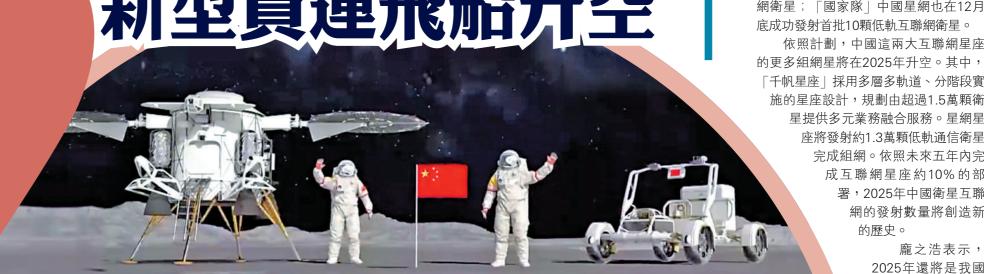
計2025年8月完成全部灌注任務,開始正式運行取

數。JUNO以測量中微子質量順序為首要科學目

標,並進行其他多項重大前沿研究。中國在中微子

研究領域的國際領先地位將得到進一步鞏固。

JUNO在2024年12月18日啟動液體灌注,預


2025年是中國「十四五 | 規劃收官之年,創新與突破將成為貫穿這一年中國科學 技術發展的關鍵詞。在遙遠的太空,中國空間站有望迎來新的「輕舟」貨運飛船;中 國將發射天問二號探測器實現對近地小行星2016HO3實現近距離探測、採樣返回和主 帶彗星探測;中國的高能同步輻射光源將在北京懷柔射出世界上「最亮的光」;江門 中微子實驗將在地下700米啟動對神秘粒子的捕捉;聚變堆主機關鍵系統綜合研究設施 「夸父」設施主體有望建成,助力人們向「終極能源」邁進……中國科研團隊正代表 着人類探索未知世界,不斷揭開科學謎題。

大公報記者 劉凝哲北京報道

「夸父」設施主體有望建成 航天飛機加緊研製

出征小行星採樣

新型貨運飛船升空

探索發展商業航天模式

▲2024年11月,中國載人航天發布宣傳片,介紹中國載人航天工程 一系列最新進展,其中包括載人登月的動畫演示

2024年,中國航天精彩不斷,空間站進行的空 間科學研究取得多項重要進展,嫦娥六號成功取回 人類首批月背樣品,刷新人類的新認知。2025年, 中國航天將迎來更多的全新挑戰。全國空間探測技 術首席科學傳播專家龐之浩表示,中國開始研製

「輕舟」貨運飛船和「昊龍」貨運航天飛機,以降 低中國空間站上行貨物運輸成本,增強上行貨物運 輸靈活性,探索發展商業航天模式。

「昊龍 |具備可重複使用能力

根據計劃,「輕舟」貨運飛船將於2025年9 月執行首次飛行任務。它採用一體化單艙構型, 貨艙空間27立方米,上行貨物運力可達2噸, 可搭載航天員生活物資、科學實驗設備、科 學載荷等。它將採用多種載荷方案和智能設 計,以提高航天員的貨物取送效率以及貨 物處理的整體效率。「昊龍」貨運航天 飛機則將具備突出的可重複使用能

> ▶ 「昊龍」貨運航天 飛機實體模型亮相去 年中國航展

2020年,中國通過天問一號任務實現對火星的 「繞落巡」探測。5年後,天問系列再次登場,天問 二號將實施近地小行星2016HO3取樣返回 和小行星帶中的主帶彗星311P環繞探 測任務。天問二號將實現近地小行星 的繞飛探測、附着和取樣返回,即 通過一次任務實現對近地小行星的 近距離探測、採樣返回和主帶彗星 探測,並開展遙感探測、就位探測 以及樣品實驗室分析相結合的多種 探測活動,使我國小天體探測技術達到國際 先進水平。

小行星探測任務 高起點起步

中國科學院國家天文台研究員李 春來等科學家就天問二號任務發表 的論文指出,在人類30多年小天體

美、歐、日先

後完成了各自獨特的標誌性任務,並取得了非常顯 著的科學探測成果。中國天問二號小行星探測任務 高起點起步,計劃3年內完成近地小行星探測和

取樣返回,10年內到達主帶開展環繞探 測。任務從解決小行星探測主要的科學 問題出發,圍繞近地小行星和主帶彗 星探測科學目標,設計了「認知小天 體、解密小天體,追溯小天體的前世 和今生,探索生命和地球水的起源, 揭示太陽對小天體的影響,以及探究 小天體對地球的危害」等5大類科學 目標,以期取得創新性研究成果。

下一代北斗衛星導 航系統發展的關 鍵之年。2024 年11月發布的 《北斗衛星導 航系統2035年 前發展規劃》 顯示,未來在 確保北斗三

號系統穩定 運行基礎上, 中國將建設以 「精準可信、 隨遇接入、智 能化、網絡 化、柔性化| 為代際特徵的下 一代北斗系統。 按計劃,我國將 在2025年完成下一 代北斗系統關鍵技 術攻關;2027年前後 發射3顆先導試驗衛 星,開展下一代新技術 體制試驗;約於2029年開

始發射下一代北斗系統組網

衛星;2035年完成下一代北

斗系統建設。

量子技術向商用邁進

● 美國谷歌公司近期宣布推出新款量子芯片 Willow,它解決了量子糾錯領域近30年來 一直試圖攻克的關鍵難題,並在基準測試 中展現出非常高的性能

基因治療應用拓展

● 被譽為「基因剪刀」的CRISPR技術能夠 對攜帶遺傳信息的DNA進行精準修改,從 而有可能糾正導致疾病的基因突變。全球 多款基於CRISPR技術的體內基因編輯療 法進入臨床試驗,針對疾病包括慢性乙 肝、轉甲狀腺素蛋白澱粉樣變性、年齡相 關性黃斑變性等。

太空探索多點開花

● 2025年,日本民間企業「i太空公司 | 將 執行新的探月任務,美國私營企業「直覺 機器 | 公司將向月球南極發射着陸器。美 國航天局將於2025年2月發射「宇宙歷 史、再電離時代和冰探測器分光光度計」 (SPHEREx),獲取超過4.5億個星系和 銀河系中超過1億顆恆星的數據。

綠色技術應對氣候挑戰

在全球氣候變化日益加劇的背景下,綠色 技術被認為是2025年技術發展的主要方向 之一。隨着技術進步,太陽能、風能等可 再生能源將變得更加高效和經濟,進一步 推動能源綠色轉型。碳捕獲與存儲等技術 也將在應對氣候變化方面發揮重要作用。

人工智能不斷進化

● 2025年, AI將進一步深入醫療、教育、交 通等領域,成為人們工作和生活中的常用 工具。多模態AI是AI進化的重要里程碑, 它融合了文本、圖像、音頻和視頻等數 據,可為用戶提供更自然、更直觀的人機 交互體驗。 資料來源:新華社

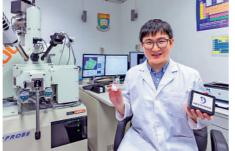
「夸父」的主要建設內容為超導磁體研究系統 和偏濾器研究系統,建成後可成為國際聚變領域參 數最高、功能最完備的綜合性研究平台,為中國開 展聚變堆設計及核心部件研發等提供強大技術支 撐。同時可以將中國聚變工程試驗堆(CFETR) 設計和大規模的工程預研有機結合,極大促進中國 聚變能應用的進程。「夸父|於2019年9月開工建 設,目前園區工程完工並正式交付,設施主體即將 於2025年建成。

▲江門中微子實驗探測器建設進入收尾階段

新華社

獲批1000毫克月背樣品 加入灣區大科學裝置建設 香港深入參與國家重大科技工程

合作 科研


2025年初,香港大學科研團隊有 望將嫦娥六號月球樣品帶回香港。去 年底,經過國家航天局探月與航天工

程中心的月球科研樣品借用申請評審,香港科研團 隊成功獲批1000毫克月背樣品,用於開展前沿研 究。香港在嫦娥六號樣品第一次申請即獲批,顯示 出兩地在這一領域合作日趨緊密,香港團隊科研水 平得到國家層面的認可。

不僅是前沿科學研究上的合作,香港科技研發 團隊不斷深入參與國家航天工程。在圓滿完成四次 探月任務和火星探測任務後,香港理工大學容啟亮 教授團隊參與載人登月工程,與航天科技集團五院 合作研製載人月球車,目前已進入初樣階段。不久

前,香港科技大學通過國家航天局遴選,獲委任領 導嫦娥八號多功能月面作業機械人暨可移動充電站 國際合作項目。

2名港澳地區載荷專家在2024年入選載人航天

月博香 球士港 樣在大 品港學 大 地 實球 驗科 室分析場 嫦煜

工程第四批預備航天員。今年,是他們進入在中國 航天員訓練中心的第二個年頭。官方此前透露他們 已全面融入團隊,訓練熱情飽滿,身心狀態俱佳。

近年來,粵港澳大灣區布局多個大科學裝置, 引領大灣區在基礎研究等方面不斷獲得突破。香港 團隊從作為用戶參與,到成為合作規劃建設者,兩 地在大科學裝置上的合作更加緊密深化。不久前, 中國散裂中子源科學中心與港澳8所高校簽約,合 作建設粤港澳大灣區首台同步輻射光源——南方先 進光源,促進大科學裝置集群形成。南方先進光源 可以作為粵港澳科技創新合作的試點和示範項目, 在資金使用、人才流動等方面積極探索,並逐步完 善相應機制,提升大灣區科技創新合作水平。

責任編輯:王 旭 美術編輯:馮自培