想像一下,一個昂 貴的家用服務機器人在打掃

衞生時,遇到了一團纏繞在一 起的充電線,它可能會瞬間「傻 眼!,停滯不前;一輛自動駕駛汽車在 遇到一個從未在訓練數據中出現過的臨時路障 時,會因為「不確定」而緊急煞車,甚至作出錯誤的 判斷。這些「傻眼」的瞬間,暴露了當前具身智能

從模仿到自主決策

合的產物,它們就像是教機器人學習

具身智能的訓練方法是多學科融

的「心法」,各有側重,共同推

動着機器人智能的進步。

(Embodied AI)領域面臨的核心瓶頸:泛化能力不足和對

不確定性的處理能力差。那麼,如何訓練出真正「不傻

眼 | 、能夠適應複雜多變世界的具身智能體呢?今天就讓我 們一起來了解具身智能是如何學習踏上「智慧」之路的。

智能的「智慧」之路

在科幻電影中,機器人似乎總 是無所不能:它們能理解人類的複

雜指令,能優雅地完成家務,甚至能在危機時刻作出合理的決 策。然而,現實中的機器人,尤其是那些試圖進入我們日常生 活環境的機器人,卻常常在最簡單的問題上「卡殼」。

Sim2Real

核心難點

物理世界的複

雜性難以在虑

擬世界中完全

模擬。

高質量、多樣 化的具身交互 數據獲取成本 極高

核心難點

機器人需要進 行數百萬次試 錯,效率遠低 於人類。

具體問題

模型在特定場景表現良好,但難 以泛化到未見過的環境或任務

核心難點

缺乏對物理、空間和時 間的顯式建模能力

具體問題

仿眞環境與眞

實物理世界的

差異,導致策

略遷移困難。

具體問題

效率

具身智能體在 物理世界中行 動,其決策的 安全性至關重

核心難點

如何確保機器人 在遇到「黑天 鵝|事件時,能 作出安全、可解 釋的決策

◀日前在中國國際工 業博覽會上展示的 「具身工業 | 成果。

強化學習(RL):像訓練寵物一樣,通過「獎勵」學習

強化學習是具身智能中最核心的訓練方法之一。智能體(機 器人)通過不斷地嘗試各種動作,並根據環境的反饋獲得「獎 勵」或「懲罰」。它的目標是找到一套最優的行動策略,以最大 化它獲得的累積獎勵。然而,它面臨的主要挑戰是樣本效率低 下。在真實世界中,機器人需要進行數百萬次的試錯才能學會一 個簡單的任務,這不僅耗時,而且可能損壞機器人或環境。此 外,獎勵函數的設計也極其困難,獎勵設計得不好,機器人可能 會學會「作弊」來獲得高分,而不是真正地完成任務。

具身智能是人工智能與機器人學交叉 的前沿領域,強調智能體通過身體與環境的動 態交互實現自主學習和進化,其核心在於將感

知、行動與認知深度融合。具身智能領域蘊含着巨大的市場 潛力和發展機遇,隨着技術的不斷成熟、應用的不斷 拓展,具身智能產品將在智能製造、智能冢居 慧醫療、社會服務等多個領域發揮重要作用。

▲人形機器人展 示搬運貨箱。 中新社

模仿學習(IL):看着學,快速入門

模仿學習是解決強化學習樣本效率低下的一個有效途徑。機器人不再自己摸索,而 是直接從人類或專家的示範數據中學習。最常見的形式是行為克隆,即直接將人類 的輸入(如視覺圖像)映射到輸出動作,就像一個學徒「看着師傅做」。但它 的挑戰在於無法超越專家表現,而且對示範數據的質量要求極高。更重要 的是,一旦機器人遇到訓練數據中未曾出現過的新情況,它就會不知所 措,表現會迅速惡化。

Sim2Real:在虚擬世界練兵,降低成本

由於真實世界訓練成本高昂,科學家們提出了Sim2Real (從仿真到現實)的方法。在虛擬仿真環境中訓練機器人 策略,然後將學到的策略遷移到真實機器人上。仿真 環境可以安全、快速地採集海量數據,並利用強 化學習等高效訓練方法。就像飛行員在模擬器 中進行數千小時的訓練,直到熟練掌握各 種緊急情況的處理,然後才登上真正的 飛機。然而,它面臨着具身智能領 域的經典難題——虛擬世界和 真實世界的物理差異(如摩 擦力、光照、傳感器噪

聲)是不可避免的。 在仿真中表現完 美的策略,到了 現實中可能會 「水土不

甚江 至可以寫書法。蘇無錫惠山古鎭 服丨。 新的 華 機

訓練具身智能的歷程,是一部讓其從「機械化工具」邁向「自主 化夥伴 | 的進化史。我們教會了它模仿,教會了它提問,教會了它探 索,如今正在教會它交互式學習。

如何讓機器在充滿未知的真實世界裏,依然可靠、安全地工作, 這不僅關乎技術,更關乎未來人機共存的信任基礎。當機器真正學會 了在不確定中思考與求助,我們迎來的,將不僅僅是一個更智能的機 器,還是一個更理解人類意圖的協作新時代。

隨着大型語言 模型(LLM) 和視覺語言模 型(VLM)的崛 起,具身智能邁入 了大模型融合期。利用 大規模預訓練的多模態模 型進行高層語義理解和任務規 劃,然後由大模型調度低層的動 作執行模塊。機器人大模型就像一 個高智商的「指揮官」。當你說「幫我 把桌上的水杯拿到廚房」,大模型會理解你 的意圖,然後將這個複雜任務分解成一系列 子任務: 識別水杯、規劃路徑、抓取水杯、 移動到廚房、放置水杯。但它的挑戰在於對

近年來,

讓機器人學會「聰明地提問 |

算力要求極高,且執行速度(推理延遲)和

成功率仍有待提高。

示

具身智能的未來,在於如何克服模仿學 習的「無法超越專家」和「遇到新情況就傻 眼上的局限,以及如何高效地利用人類的指 導。

華裔人工智能女工程師Anrui Gu在加州 大學伯克利分校的研究,聚焦於交互式 模仿學習和基於預訓練模型的規 劃。從高中獲得全美學術十項全 能大賽的個人冠軍,到伯克利 畢業後在xAI從事大模型與社 交媒體交互的工作,Anrui Gu的目標是讓機器人能夠 交互式感知環境、從異質示

> ▶當前具身智能遇到的問 題包括對不確定性的處理 能力差。

範者學習並利用語義特徵進行泛化。

Anrui Gu參與發表的IIFL(隱式交互式 集群學習)項目,正是對傳統模仿學習的革 命性改進。IIFL的核心創新是它讓機器人不 僅能「看着學」,還能夠在學習過程中主動 向人類提問。IIFL給機器人裝了一個「不確 定性傳感器」。當機器人覺得「我很不確定 該怎麼做」時,它才會請人類接手。

傳統的訓練方法只學「一種正確方 式|,但IIFL能表示多種正確的動作。比如 在自動駕駛中,有的人喜歡提前打方向盤, 有的人喜歡晚一點再轉彎,IIFL都能學會並 理解這些都是「可行的策略」。如果一輛自 動駕駛汽車遇到一個「奇怪情況」(比如擺 放方式不同的臨時交通錐),它可以遠程請 求人類司機接管一次,學到的經驗會立刻分 享給整個機器人集群。

機器人通用能力的挖掘

Anrui Gu還探索了如何利用感知基礎模 型來實現更好的泛化,甚至零樣本泛化。她 開發了一個Transformer模型,通過自監督 視覺模型來獲取物體的「關鍵點」(比如杯 柄的位置、傾斜角度),然後通過學習這些 關鍵點之間的關係來構建策略。這表明模型 學習到了關於對應物體抓取點的有用共性, 而不是僅僅記住圖像像素。

> 這就像教機器人一個「舉一反三」的本 領。你教它如何抓取

一個紅色馬

克杯的杯柄,它就能自動將這 個「抓取杯柄」的技能,泛化到藍色水瓶、 白色茶壺等不同背景或不同形狀的物體上。 這種方法正是當前具身智能訓練的最新趨 勢:先用大模型提取強大的、與具體任務無 關的表徵,再把它們用於小樣本甚至零樣本 的新任務,從而解決分布差異和泛化問題。

AI視覺的工業實踐與泛化

Anrui Gu將這種「讓模型在新環境中也 能可靠發揮」的核心理念,帶入了工業界, 並在電子元件分銷商Smith & Associates 擔任首位AI工程師時,從零開始構建了AI視 覺元件檢測項目Argus。

在半導體銷售行業,確保元器件的真實 性至關重要。一個卷帶中可能包含多達一萬 個元件,以往人工檢測只能抽樣少量零件, 耗時耗力且容易出錯。Argus系統利用AI對 元件表面進行分析,實現了高通量、全覆 蓋、實時檢測,能以每分鐘180個零件的速 度實時分析,極大提升了質量控制能力和防 偽能力。

Anrui Gu沒有依賴需要大規模基礎設施 和算力的方案,而是用一套自研方案,將實 驗室中對不確定性、泛化和高效學習的理 解,巧妙地應用於工業AI視覺領域。這種原 創性的方法,比常規AI集成方式節省了數月 的開發周期,並已在Smith位於全球的多個 運營中心規模化應用。

這項技術能幫助任何需要大規 模、高精度質檢的產業(如製 藥業、汽車製造業、食品飲 料業、奢侈品鑒定等)提高 效率、降低人力成本,並 強化產品的可信度與市場 競爭力。

◀機器人可以擔任準 確拿取藥品的工作。 新華社

文化 經濟觀察家 投資全方位

責任編輯:李兆桐 美術編輯:莫家威