

催化劑(catalysts)是現代化學家的基本工具,但自十九世紀以來,人類一直以為世上只有兩類催化 劑,而且萬變不離其中,直至2000年,德國化學家利斯特與美國化學家麥克米倫在各自獨立的研究中, 研發出第三類催化劑「不對稱有機催化」(asymmetric organocatalysis),為化學合成領域帶來翻天 覆地的改變。基於他們對不對稱有機催化方面發展的貢獻,兩人昨日獲授予本年度諾貝爾化學

出生:1968年1月11日,德國法蘭克福

現職:德國馬克斯・普朗克煤炭研究所所長

斯特現為德國馬克斯·普朗克煤炭研究所所長,麥克米倫 **不** 則任職美國普林斯頓大學教授,兩人同為53歲。諾貝爾獎 委員會在聲明中指出,這兩名科學家的貢獻,為合成分子提供了 一種巧妙的工具。

「不對稱有機催化」更環保

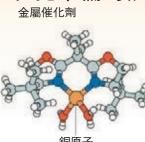
在十九世紀,化學家開始探索不同化學物質相互反應的方式, 瑞典著名化學家貝采利烏斯看出了規律,指有一種新的「力」可 以「產生化學活動」,有些物質僅需存在便可開啟化學反應,他 認為這些物質具有「催化力」,因此將這種現象稱作「催化」。 自此科學家發現無數催化劑,藉着這些技術,現時化學產業可生 產出日常生活中使用的數千種不同物質,例如藥物、塑料、香水 和食品等,估計全球35%的國內生產總值(GDP)在某種程度上 都涉及化學催化。

眾多研究和工業領域都依賴化學家構建分子的能力,這些分 子可以形成具彈性、持久耐用的材料,在開發電池、治療疾病 等不同的範疇中均被廣泛應用。這項工作離不開催化劑,催化 劑可以控制、加速化學反應,卻不會成為最終產物的一部分, 例如汽車中的催化劑可將排放廢氣中的有毒物質轉化為無害的 分子, 人體中也包含數千種催化劑——酶,它們可以幫助產生 生命所必需的分子。

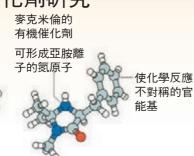
催化劑是化學家的基礎工具,但長期以來,研究人員認為催化 劑只有兩大類:金屬和酶。直至2000年,利斯特和麥克米倫在 有機小分子的基礎上,分別獨自開發出被稱為「不對稱有機催 化」的第三種催化劑模式。「不對稱有機催化」不僅讓化學合成 變得對環境更友善,還能協助合成不對稱的分子。

出生:1968年3月16日,英國蘇格蘭

現職:美國普林斯頓大學教授


諾獎評審:簡單想法最難想像

有機催化劑擁有一個穩定的碳原子框架,讓更多活躍的化學團 可結合起來,其中就有許多常見的元素,例如氧元素、氮元素和 硫元素等,意味着這些催化劑對環境友善,並且能更廉價地生 產。有機催化劑之所以能爆發式地快速增長,還得益於不對稱催 化。當分子在不斷構建時,經常會出現形成兩種不同分子的情 況,就像人類的左右手一樣,是彼此的鏡像結構。但化學家通常 只會需要其中一種,尤其在醫藥生產中需作出這種選擇


自從有機催化劑面世以來,相關研究便急速發展,利斯特和麥 克米倫依然是該領域的領導者,他們證明了有機催化劑能在多個 維度上驅動化學反應。通過這些反應,研究者可以更有效地生產 出製造藥物所需的分子,甚至能在太陽能電池中捕捉光的分子。 諾獎委員會成員塔夫斯戴德指出,利斯特和麥克米倫研發的有機 催化劑,給人類帶來前所未有的巨大益處

諾獎委員會指出,現時化學家可以輕鬆列出數千個如何使用有機 催化的例子,「但為什麼沒有人更早提出這種簡單、綠色又廉價的 非對稱催化概念呢?」委員會認為,這是因為簡單的想法往往是最 難想像的,「我們的觀點被關於世界應該如何運作的強烈先入之 見所掩蓋,例如只有金屬或酶才能驅動化學反應的想法」,利斯特 和麥克米倫正正成功打破了這些先入之見,找到了一個巧妙的方 案,解決困擾了化學家們幾十年的問題。 ●綜合報道

麥克米倫的催化劑研究

由於金屬催化劑易受潮濕環 境破壞,麥克米倫開始思考 能否研發更耐用的催化劑。

麥克米倫設計出能夠製造亞胺離 子的簡單分子,其中一個分子非 常適合用於不對稱催化。

香港文匯報訊(記者 蕭桂煬)利斯特和麥克米倫 的研究打開了催化領域的嶄新大門,全球各地包括 香港也有不少學者從事相關研究。香港大學理學院 化學系助理教授何健是其一,他接受香港文匯報專 訪時形容,他們的貢獻在於帶來「新思路」,認為 諾委會是對兩人在概念上的關鍵性作出肯定。

何健指出,工業常用的金屬催化會製造大量污 染,因此研究有機催化顯得十分重要,不過有機催 化也有明顯缺點,例如用量高、使用範圍窄等,也 未必如金屬催化般高效、具穩健性 (robustness) 。 目前學界正從兩個大方向進發,一是提升有機催化 劑的效率,以及增加有機催化劑的循環利用性,以 取代金屬催化,從事相關研究者有幾百至上千人。 他特別提到,並非有機催化劑就一定「更綠色」、 具可持續性,也要看用量等因素。

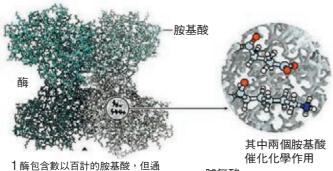
「老本行」獲獎感鼓舞

何健談到,他是與友人在電話中觀看直播,當聽 到委員會説到「有機合成」,他已經心中有數, 「當然有機化學 (領域) 中不止這兩位有資格拿 獎。」他曾多次聆聽得獎人報告,稱他們想法透 徹,言談充滿激情。

深耕有機催化多年的何健形容,「老本行」獲獎 令他感到鼓舞,「上次純有機得獎已經要數到2010 年」,認為委員會是認同研究的關鍵性。何健現時 致力於各類過渡金屬催化的有機方法學研究,包括 不對稱催化,相信這將是未來的一大方向。

利斯特(右)接獲得獎消息時正與妻 子在荷蘭阿姆斯特丹度假,兩人開心地 自拍慶祝。 網上圖片

利斯特妻子說笑成真 麥克米倫以為惡作劇


化學題得主クー利斯特昨日接獲瑞曲 皇家學院通知得獎消息時,正與妻子在 荷蘭阿姆斯特丹度假,他當時以為有人 跟他開玩笑,當得悉確實獲獎時感到難 以置信,形容永不會忘記這時刻。

每年說笑留意瑞典來電

利斯特透過電話參與諾獎記者會,他 表示往年每到化學獎公布當天,妻子都 會說笑要他留意有沒有來自瑞典的來 電,但今年妻子沒有開這個玩笑,他也 沒有預期會得獎,豈料卻真的收到瑞典 來電,「這是非常特別的時刻,我永不 會忘記。」被問到今次得獎對他未來作 為研究員來説有何意義,利斯特表示自 己有一些計劃,希望做一些之前認為不

可能的事,但沒有透露詳情。 另一得主麥克米倫表示,他昨天早 上收到來自瑞典的短訊,告知獲得化 學獎,他認為是惡作劇,未有理會便 繼續睡覺,但未幾手機便響個不停。 麥克米倫形容對得獎感到詫異及興奮 莫名, 「我關心的是嘗試藉着化學研 究,對社會帶來正面影響。有機催 化是一個簡單的主意,卻引發大 量不同的研究,毋須花費大額金 錢和大量設備,但在化學領域 作出貢獻,我尤其感到自 ●綜合報道

利斯特開發的催化劑

常只有少數胺基酸與化學反應相 關,利斯特因此思考是否真的需 要將整個酶用作催化劑

2 利斯特於是進行實驗,看看一種 名爲脯氨酸的胺基酸能否催化化 學作用,結果非常成功。脯氨酸 具有一個氮原子,可在化學作用 期間提供和容納電子。

減少合成浪費 簡化藥物生產

共同奪得今屆化學獎的利斯特和麥克米倫發現 了稱為「不對稱有機催化」的全新催化概念。有 機催化劑通常由簡單分子構成,在以往的化學生 產過程中,必須對每種中間產物進行分離和提 純,否則副產物便會過多。這導致在化學構建過 程中,每一步都會損失部分物質。相對來説,有 機催化劑在生產過程中,往往可以讓幾個環節連 續進行、中間毋須停頓。這被稱為「級聯反 應」,可大大減少化學製造過程中造成的浪費。

合成番木鱉鹼效率提高7000倍

有機催化帶來更有效的分子結構例 子之一,就是合成天然且極其複

雜的番木鱉鹼的分子。番木鱉鹼是一種劇毒化學 物質,一般用作製造鼠餌。化學家一直希望使用 盡量少的合成步驟,在1952年番木鱉鹼首次被合 成時,需經過29次不同的化學反應,只有 0.0009%的初始材料最終形成番木鱉鹼。剩下的 材料都被浪費。到2011年,研究人員能使用有機 催化和級聯反應,僅以12個步驟合成番木鱉鹼 生產效率提高逾7,000倍。

有機催化對經常需要不對稱催化的藥物研究產 生重大影響。在化學家可進行不對稱催化之前, 許多藥物生產都包含一個分子的兩個鏡像,其中 一個是活躍的,另一個有時會產生無用的影響, 一個災難性的例子是1960年代的「沙利度胺」

(Thalidomide) 醜聞,其 中沙利度胺製藥的一 個鏡像,導致數千個發育 中的人類胚胎嚴重畸形。

研究人員現在使用有機催化,可 相對簡單地製造大量不同的不對稱分 子,例如可以人工生產潛在的治療物質, 否則這些物質只能從稀有植物或深海生物中 少量分離。藥廠還可用該方法簡化現有藥物的 生產,例子包括用於治療焦慮和抑鬱症的帕羅西 汀,以及治療呼吸道感染的抗病毒藥物奧司他偉 (商品名「特敏福」)。 ●綜合報道