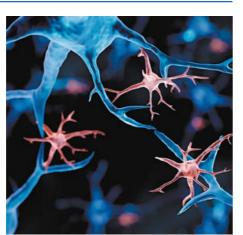


製造聰明顯微鏡 清楚觀測防干擾

我們常說「眼見為實」,這對科學家來說,體驗可能更深刻。如果不能 觀察某件事物,就無法得到數據以加深對大自然的認識,亦難以判別不同 理論的優劣。生物學家經常需要運用顯微鏡來觀察微小的生物結構,因此 高解像度的顯微鏡,對他們十分重要。今次就和各位介紹一下,近年研究 人員如何改善顯微鏡以便利更前沿的科學研究。


參考觀星閃呀閃 避開心臟跳又跳

如何在老鼠心跳的影響下觀察牠們的腦 部活動,是一個很值得分享的案例。一般 來説,顯微鏡只能有效地觀察細胞組織表 面1毫米的地方;來自更深範圍的光線: 會在到達顯微鏡的途中被各種各樣的細胞 組織干擾,以致得到的影像變得扭曲

老鼠的心臟每分鐘跳動近600次,令觀 影像變得模糊。不過原來天文學家也一直 面對相似的問題,即星光在到達地面之前 會受到地球大氣層的干擾,因而在我們的 眼中就變得閃爍不定,「一閃一閃」。為 此,天文學家開發了調適光學(adaptive optics) 這種技術。

有別於一般固定的望遠鏡鏡面,調適光 學使用了可以改變形狀的鏡面,實時地根 據大氣層的狀況調整鏡面的形狀,從而抵 消大氣層帶來的影響。生物學家就將這個

◆ 神經細胞在傳遞信息的時候,會將鈣釋 放到下一個神經細胞的末梢接受器中。

技術引用到顯微鏡之上,利用電腦實時地 捕捉老鼠心跳造成的震動,繼而對影像作 出相對的修正。憑着這個技術,研究人員 成功深入老鼠大腦表層以下1.5毫米的地 方,觀察到老鼠大腦中的海馬體

◆ 星星一閃一閃,是因為星光在到達地面之前會受到地球大氣層的干擾。

網上圖片

看到特別新結構 原來調校有錯誤

在另一些研究中,生物學家需要顯微鏡捕捉轉瞬即逝的罕有 事件,例如神經細胞在傳遞信息的時候,會將鈣釋放到下一個 神經細胞的末梢接受器中。要觀察這些細微的活動,我們需要 強烈的光線來達至較高的解像度。麻煩的是這些神經細胞的活 動並不經常發生,如果我們將樣本長期放於強光之下等待稀有 活動的出現,樣本極容易被強光破壞。為了解決這個問題,研 究人員動用了兩套系統:一套用作低解像度的長期觀察;一旦 樣本有什麼活動,另一套高解像度的顯微鏡系統就會啟動,利 用強光詳細捕捉重要的時刻。

隨着對觀察的要求愈來愈高,運用電腦來輔助顯微鏡的應用

也愈來愈多,用以延伸顯微鏡的功能。不過在應用這些新技術 的同時,我們也要小心認證,確保我們得到可信的影像。比如 説南非的研究人員 Caron Jacobs 就曾在觀察 T 淋巴細胞的時 候,在顯微鏡中觀察到特別的蜂巢狀結構。不過Jacobs和她的 研究夥伴知道,這樣的結構並不存在於T淋巴細胞之上,因此 應該是顯微鏡技術還沒有調校好的結果。

為了讓科學研究更進一步,科學家們一直在開發更先進的顯 微鏡技術,以求看得更細、更準確。當然在利用這些技術的同 時,我們要善用我們的專業知識,判定得到的影像是否正確 而不是盲目相信儀器告訴我們的結果。

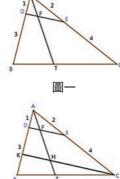
◆ 杜子航 教育工作者

早年學習理工科目,一直致力推動科學教育與科普工作,近年開始關注電腦發展對社會的影響。

三角形內的線段比

這次談一道關於線段比的題目,答案比較簡潔,可能會有點難懂,各位可以試試看。

在△ABC中,點D和E分別在AB和AC上,角平分線AT交DE於F(如 圖一)。若AD = 1, DB = 3, AE = 2及EC = 4, 計算AF: AT。


答案: 在AB上取點K,使得KC//DE。

由截線定理得AD:DK = 2:4 = 1:2 = AF:FH,又有KB = 3-2 = 1。 由角平分線定理,得BT:TC = (1 + 3):(2 + 4) = 2:3。 對△ABT和KC用梅涅勞斯定理,有

 $\times \frac{\text{BC}}{\text{CT}} \times \frac{\text{TH}}{\text{HA}} = \frac{1+2}{1} \times \frac{2+3}{3} \times \frac{\text{TH}}{\text{HA}} = 1$

故此 $\frac{TH}{HA} = \frac{1}{5}$

因此AF: AT = 1: $(1 + 2 + \frac{1+2}{5}) = 5$: 18 °

圖一

解題時是加輔助線,然後在截線定理中找到左邊 和中間的線段比,再配合梅涅勞斯定理,找到中間 的各線段比,之後就找到答案了。

上方的題解用上了角平分線定理與梅涅勞斯定 理,這些在課內都較少提及,在此簡介一下。比如 圖一裏,AT平分∠A,則有BT:TC = AB:AC, 而梅涅勞斯定理,則是對於三角形和一條通過三角 形三邊的直線,有些線段比的關係式,具體來說,

就是上方的 $\frac{AK}{KB} \times \frac{BC}{CT} \times \frac{TH}{HA} = 1$,這看來有點繁 複,若順着各點的次序來看,就是由三角形的點A 開始,到直線點K的線段,除以由K回到三角形B 點的線段長度,之後乘以B到直線C點的長度,然 後除以C回到三角形T點的線段長度,如此類推,

寫算式時,三角形的點和直線上的點都是交錯出 現的,那樣各個比乘起來就是1。這兩條定理,在 網上要找證明也很容易,這裏就不詳述了。

解這一題時要用到很多線段比的策略,而且也要 相當純熟才會用得好。這些用上了比的技巧,在高

小的奧數就會出現,要是課內多數是中一中二左 右,學到比和率那一課才會見到。以上方的題解來 説,算是相當簡潔的了,中學生若覺得題解很易明 白,各個線段比的部分也能理解,那線段比的技巧

就算掌握得不錯了。 今次的題解沒特別寫得很易明白,因為奧數書的 題目解起來,都是數學化地説明做法就算,雖然久 不久也有分析,但數學上還是比較精簡。看數學 書,還得要適應一下那點嚴密的推理和看來有點艱 澀的算式。

從前看奧數書,有些談幾何的部分,久不久就有 些算式是不知道怎樣來的。比如角平分線定理,從 前也只有題解中的一句,靠自己反覆思索才想通, 不是先懂了定理,才看到定理怎樣用。

若果想看多一點數學書,就要對艱澀和不解有承 受力才行。畢竟看書並不像有老師教自己,會按着 程度來教。書裏寫的都是對的東西,但未必有學 過。遇着看不懂的,要記下來思索,也是挺常見的

◆ 張志基

簡介:奧校於1995年成立,為香港首間提供奧數培訓之註冊慈善機構(編號:91/4924),每年均舉 辦「香港小學數學奧林匹克比賽」,旨在發掘在數學方面有潛質的學生。學員有機會選拔成為香 港代表隊,獲免費培訓並參加海內外重要大賽。詳情可瀏覽:www.hkmos.org。

◆ AI可用於災害監測和預警。圖為日本鹿兒島的一次火山爆發。

資料圖片

分析過往經驗 預言災害發生

為減少重大自然災害對人類的社會經濟損失,人 們長期致力於研究重大自然災害的預警監測與管 理,而人工智能(AI)技術也為這項研究指引了新

要實現實時可靠的災害監測與預警,AI技術不可缺 少。有別於傳統需要大量人力的實地監測,研究人員 通過輸入真實的地理位置、氣象、地質、人口等數 據,經過數輪學習後,演算法模型不僅可以針對過往 發生的自然災害情況進行規律搜查,還能做出相應的 預測。

根據實時照片 繪製災情地圖

不僅如此,利用卷積神經網絡進一步開發的算法模 型,更可以根據實時衛星照片,偵測照片的變化,繪 製災情地圖,提供受災較嚴重的地理位置信息,從而 幫助開展更高效率的救援行動。

以地震預測模型為例,通過輸入地震發生前的各類 環境變化數據至預測模型中,例如土壤溫度變化、天 空的異常雲層、動物的異常行為等,算法模型可以透 過深度學習數據中的聯繫,對地震發生的時間、強 度、烈度等作相應預測,以爭取更多時間疏散民衆、 儲備物資等。

不僅如此,在地震發生後,AI技術能通過分析大量 社交媒體數據,提供更準確的災情評估。基於大數 據,深度學習算法能根據社交媒體中的時間、地理位 置等災情相關信息,為判斷應急救援區域和救災物資 分配等提供實時準確的數據基礎。

即使如此,要實現實時精準的自然災害預測和管 理,仍離不開構建大量真實準確的訓練數據。隨着人 們不斷深入研究AI技術,建立更加完善的自然災害 預測管理系統,將進一步提高預測模型算法的時效性 和精確度,幫助市民建構更充分的應對措施,從而減 少經濟和人命損失。

◆ 中大賽馬會「智」為未來計劃 https://cuhkjc-aiforfuture.hk/ 由香港賽馬會慈善信託基金捐助,香港中文大學工程學院及教育學院聯合主辦,旨在透過建構可持 續的AI教育生態系統將AI帶入主流教育。通過獨有且內容全面的AI課程、創新AI學習套件、建立

教師網絡並提供AI教學增值,計劃將為香港的科技教育寫下新一頁。

百科啓智 STEM • 中文星級學堂

• 知史知天下