同塞拉利昂總統比奧舉行會談 見證簽署多項雙邊合作文件

習近平:中塞關係堪稱中非團結合作典範

香港文匯報訊 據新華社報道,2月28日下 午,國家主席習近平在人民大會堂同來華進行 國事訪問的塞拉利昂總統比奧舉行會談。

習近平指出,中塞友好源遠流長,雙方在涉 及彼此核心利益和重大關切問題上相互支持, 在經濟社會發展領域高效合作,在世界和平和 發展等議題上密切協調,在抗擊埃博拉疫情 (港稱伊波拉疫情)、新冠疫情時共克時艱, 中塞關係堪稱中非團結合作的典範。中方願同 塞方一道,鞏固高水平政治互信,推進務實互 利合作,加強國際和地區事務協調,推動中塞 關係再上新台階

中方:支持中企赴塞投資興業

習近平強調,中方堅定支持塞拉利昂人民走符 合本國國情的發展道路,願同塞方加強治國理政 交流,繼續相互支持彼此重大關切,維護主權、

設、人力資源等領域發展提供力所能及的幫助和 支持,鼓勵、支持中國企業赴塞投資興業。雙方 要加強在聯合國安理會事務中的合作,共同維護 非洲和廣大發展中國家利益。歡迎塞方積極參加 全球發展倡議、全球安全倡議、全球文明倡議, 攜手推動構建人類命運共同體。

習近平指出,中非人民命運與共。中國始終 把發展同非洲國家團結合作作為對外政策的重 要基石。中方將秉持真實親誠理念,加強同非 洲國家相互支持和友好合作,將支持非洲工業 化倡議、助力非洲農業現代化計劃、中非人才 培養合作計劃同非盟《2063年議程》、非洲各 國發展戰略緊密對接,把中國的發展、非洲的 發展、世界的發展進一步結合起來,推動中非 合作提質升級,推動世界走向和平、安全、繁 榮、進步的光明前景。中方願同包括塞拉利昂

在內的非洲朋友一道,辦好今年的中非合作論 壇會議,將中塞、中非友好發揚光大。

塞方: 願同中方拓多領域合作

比奧表示,中國是塞拉利昂信任和依賴的朋 友,雙方始終相互尊重、平等相待,擁有深厚 傳統友誼。塞方感謝中方為塞經濟社會發展 提供的大力支持,高度讚賞中國共產黨領導 中國人民實現跨越式發展,推進民族復興。 中國經驗為發展中國家加快發展提供了深刻 啟示。習近平主席提出的「一帶一路」倡議對 促進全人類共同利益產生廣泛積極影響。塞方 恪守一個中國原則,堅定支持中方維護主權和 領土完整,支持中方維護自身核心利益,願學習 借鑒中國經驗,同中方加強共建「一帶一路」合 作,拓展基礎設施建設、貿易、教育、公共服 務等領域合作新空間,為塞中傳統友誼注入新

動力,推動塞中全面戰略合作夥伴關係進一步 發展。塞方願同中方加強在地區和國際事務中 的協調配合,共同促進世界和平與發展。

會談後,兩國元首共同見證簽署共建「一帶 -路」、農業、經濟發展、落實全球發展倡議

雙方發表《中華人民共和國和塞拉利昂共和國 關於深化全面戰略合作夥伴關係的聯合聲明》。

會談前,習近平和夫人彭麗媛在人民大會堂 北大廳為比奧和夫人法蒂瑪舉行歡迎儀式。

天安門廣場鳴放21響禮炮,禮兵列隊致敬 兩國元首登上檢閱台,軍樂團奏中塞兩國國 歌。比奧在習近平陪同下檢閱中國人民解放軍 儀仗隊,並觀看分列式。

當晚,習近平和彭麗媛在人民大會堂金色大 廳為比奧夫婦舉行歡迎宴會。

王毅參加上述活動

等領域多項雙邊合作文件。

地面空間站」驗收運行,航天再添國之重器

模擬九大類空間環境因素 不受時空限制 減少安全隱患

點讚中國

香港文匯報 訊(記者王 欣欣、于海

江 哈爾濱報道)由哈爾濱工業大學和中國 航天科技集團聯合建設的「空間環境地面 模擬裝置」國家重大科技基礎設施項目27 日通過國家驗收,開始正式運行。這是中 國航天領域首個大科學裝置,「空間環境 地面模擬裝置,就是要在地球上建設一個 與真實宇宙空間環境相似的『地面空間 站』,相當於把空間站『搬』到地球 上。」空間環境地面模擬裝置常務副總設 計師、常務副總指揮、哈爾濱工業大學空 間環境與物質科學研究院院長李立毅教授 向香港文匯報記者介紹,這一「地面空間 站」可以綜合模擬真空、低溫、粉塵、電 磁輻射、電子/質子輻射、弱磁等九大類空 間環境因素,聚焦航天領域重大基礎性科 學技術問題,構建了中國首個空間綜合環 境與航天器、生命體和等離子體作用科學 領域的大型研究基地,為中國航天器的在 軌安全服役、人類的長期駐留以及人類對 空間特殊環境、極端環境的防控能力提供 幫助和支撐。

● 近地空間等離子體環境模擬分系統

○空間環境地面模擬裝置園區效果圖 哈爾濱工業大學供圖

哈爾濱工業大學供圖

27日,空間環境地面模擬裝置常務副總設計師 李立毅做講解,國家驗收委員會專家現場考察

哈爾濱工業大學供圖

空間環境地面模擬裝置重要設施

空間綜合環境模擬與硏究系統

能夠在地面模擬太陽系典型空間環境因素,包括 真空、高低溫、原子氧、空間粉塵、粒子輻照、 電磁輻射等,實現了同一空間多環境因素及其強 關聯效應和極端環境的地面模擬。

- ◆空間綜合輻照環境模擬系統:能夠在地面實現 真空、低溫、太陽/紫外電磁及帶電粒子綜合 輻照環境地面模擬。
- ◆月表環境模擬系統:能夠模擬真空、低溫、電 子輻照、紫外輻照、微米/亞微米級帶電粉塵 等月表多因素綜合環境及效應。
- ◆火星塵環境模擬系統:為國內首台直流引射式 低密度風洞,技術指標達到國際領先水平,平 台致力於火星表面塵暴環境的模擬
- ◆高速粉塵環境模擬系統:是國內首台用於空間 高速粉塵環境模擬的大型裝置,技術指標達到 國際領先水平。
- ◆ 高能粒子輻照環境:模擬已完成 300MeV 質子 重離子加速器、器件高能離子輻照終端和多因 素耦合生物學輻照終端建設工作,並為多家科 研單位提供服務。

空間磁環境模擬與研究系統

能夠在地面實現亞納特級-亞毫特級、大尺度、 多功能的磁環境模擬。

空間等離子體環境模擬與研究系統

能夠在地面實現對近地空間和臨近空間等離子體 環境的模擬。

◆整理:香港文匯報記者 王欣欣、于海江

才介紹,空間環境地面模擬裝置是「十二五」 時期開始建設的國家重大科技基礎設施之 一,位於哈爾濱新區。「空間環境地面模擬裝置建 設園區」大約有50個足球場大小,「一大三小」實 驗樓外表普通,裏面卻別有洞天。「一大」即空間 綜合環境實驗樓,「三小」即空間等離子體科學實 驗樓、空間磁環境科學實驗樓、動物培養室。

服務空間科學 提供科研環境

裝置的建成為構建形成中國地面物理模擬、在軌 實驗驗證和數值模擬仿真「三位一體」的天地一體 化空間環境與物質作用研究體系提供了核心平台, 為揭示空間環境下物質結構演化規律和耦合效應的 物理本質,服務中國航天器在軌可靠服役、人類長 時空間駐留、深空探測和商業航天發展等國家重大 空間活動以及經濟社會高質量發展的戰略需求提供 強大的技術手段和條件支撐,將有力促進中國空間 科學與技術領域原始創新水平的提升。

堅持自主創新 突破關鍵技術

「未來,許多需要抵達太空才能進行的實驗, 在這裏就可以完成。航天員們還可以在這裏體驗 和適應月球、火星等星球的表面環境。」李立毅 教授表示,相較於把實驗儀器設備搬到太空, 「地面空間站」既能節省成本、減少安全隱患,

又可以根據科學問題和工程需要設置特定的環境

因素,不受時空限制進行多次重複驗證,為全

國、全世界的科學家提供科研的環境和條件。

該項目從2005年開始論證,到正式通過驗收, 歷時18年,建設過程中堅持自主創新,突破了一 系列關鍵技術,各系統已全部投入試運行和開放 共享,服務了國內外多家用戶單位,支撐了中國 多款宇航電子元器件的研發和一系列國家重大航 天任務的實施,取得了多項標誌性成果。

由中國工程院院士、蘇州實驗室主任徐南平等 擔任聯合主任的國家驗收委員會一致認為,該項 目突破了空間環境模擬及其與物質作用領域的系 列關鍵技術,項目總體建設指標處於國際先進水 平,部分關鍵技術指標處於國際領先水平。

構建天地一體化國家空間環境

據介紹,空間環境地面模擬裝置通過模擬真 空、輻照、弱磁、等離子體等九大類空間因素, 在地面構建了國際上首個綜合環境因素最多,具 有原位/半原位動態測量分析能力,可實現材料、 器件、系統及生命科學領域多尺度、跨尺度環境 效應研究的綜合性研究裝置,為中國航天事業發 展及人類太空探索貢獻智慧和力量。

未來,大科學裝置將成為搶佔科技競爭制高點 的新策源地,從航天電子元器件檢驗到引力波探 測,從農業育種到生命科學實驗,越來越多的科 研攻關將在這裏展開。依託在軌運行的「天宮」 和空間環境地面模擬裝置等,構建天地一體化國 家空間環境與物質作用研究體系,帶動衛星製 造、電子信息、人工智能、新材料、生物醫學等 新興產業發展。

已申請120餘項發明專利 科研與建設同步推進

香港文匯報訊(記者 王欣欣、于海江 哈爾濱 報道)李立毅介紹,「地面空間站」工程兼具科 學研究與工程建設的特性,科研探索始終貫穿於 建設之中,需要不斷攻關、不斷調試、不斷改 進,有一些全球都很少碰觸的尖端科研難題,更 需要以「鋼牙啃硬骨頭」的勁頭,反覆進行研究 試驗。「在這裏,科研與建設實現了同步推進, 哈工大有關科研建設團隊聯合其他協作單位一起 攻克了多項關鍵核心技術。未來,『地面空間 站』還將在腦科學、生命健康、高端儀器研發等 方面發揮重要作用。」

「裝置建設的溢出效應非常明顯,圍繞空間環境 模擬的許多關鍵技術在建設需求牽引下得到突破。 目前,我們已累計申請國際和國內發明專利120餘 項。」李立毅介紹,國內外的科學家們已經迫不及 待地想要進入「地面空間站」開展科學實驗。

李立毅表示,空間環境地面模擬裝置既是國之 重器,也是科研利器。「未來,我們會努力把 『地面空間站』打造成空間科學、航天技術、物 質科學等領域最先進的技術研究與工程應用平 台,讓這套國之重器為加快建設航天強國發揮更 大作用。」

▶月表環境模擬系統。

哈爾濱工業大學供圖

中國科學院院士、哈爾濱工業大學校長韓傑才 説,未來學校將不斷優化裝置技術指標,持續提高 裝置科學水平,並依託該裝置有組織地推進科學研 究和發現探索,努力揭示更多深層次科學規律,加 速形成更多自主知識產權技術,培養更多世界一流 科技人才,從根本上解決制約中國空間科學和航天 科技的「卡脖子」問題,為中國實現從航天大國向 航天強國的重大跨越作出新的貢獻。