量子力學不斷進步 微波[勸和]極性分子

量子力學這個詞,大家應該從電影中聽說過,細微的粒子在微觀世界中的 行為其實是依從量子的原理,與我們在日常生活中熟知的物料移動規律大不 相同。這也代表,善用物料粒子之間的量子原理,可以發掘出新狀態的物 料。今次就跟各位分享一下,近日科學家利用化學分子,在低溫環境下開發 出的新的物料狀態。

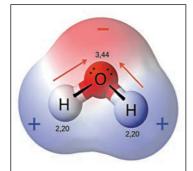
低溫環境下的全新物料狀態

這個狀態其實我們並不完全陌生,早在 1920年代,印度物理學家薩特延德拉·納特· 玻色與阿爾伯特‧愛因斯坦就已預測這種新 的物料狀態存在的可能性,玻色認為有些粒 子可以共存於同一種狀態之下 (這些粒子稱 為玻色子),所以當面臨低溫的環境,玻色 子沒有太高的能量時,就會共處於同一個能 量最低的狀態,以致所有玻色子表現得「同 心一致」、一起行動,進入名為玻色-愛因斯 坦凝聚體 (Bose-Einstein condensate) 的狀 態。一些物料的超導電特性,就是因為玻 色-爱因斯坦凝聚體的出現。

到了1995年,三位科學家將銣-87降溫至絕 對零度以上約0.0000001度,成功達到了玻 色-愛因斯坦凝聚體的狀態,相關的科學家 因而在2001年獲頒予諾貝爾物理學獎。不 過, 銣原子之間不太會互相影響, 宛如獨立 的個體,這不禁讓科學家們好奇:可否將相 互影響的粒子,帶進玻色-愛因斯坦凝聚體的

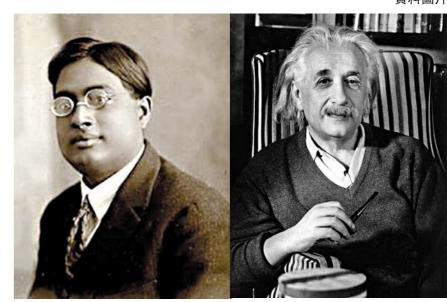
由鈉和銫兩種元素組成的分子,正好就可 以在較遠的距離內相互影響。這類物料被稱 為極性分子,其內裏的電荷分布並不平均,

因此每一個分子就好像一枚磁鐵,當分子的 同極靠在一起就會互相排斥,而不同的極在 附近時就可以相互吸引。


不過對玻色-愛因斯坦凝聚體來說,這些極 性分子可能是太「活躍」了:這些分子很容 易結合成更巨型的粒子,再慢慢離開系統, 所以不能穩定地維持凝聚體的狀態。

近日的研究就利用了微波來解決這個問 題,微波爐裏的微波其實也是電磁波的一 種,能夠影響帶電粒子的活動,有科研團隊 運用兩組不同的微波,減弱極性分子之間的 吸引力,制止它們結合成更大的粒子,令它 們穩定地進入玻色-愛因斯坦凝聚體的狀

科研人員先將鈉原子和銫原子放在一起, 讓它們組合成分子,再啟動微波去限制它們 的活動,並將它們降溫到絕對零度以上 0.000000006度,所製造出的玻色-愛因斯坦 凝聚體共有200個分子,能達到每立方厘米 中有一萬億個分子的密度。這樣的密度在玻 色-爱因斯坦凝聚體中不算高,但卻是相互之 間有影響的粒子進入這個狀態的一個重要案



◆ 超冷原子光晶格平台可以人工操縱冷原子的量子狀態,從而模擬一些難以操縱的、複雜物理系統的機 資料圖片

▲ 水分子中電荷分布不均 匀,也是一種極性分子。 網上圖片

▶ 玻色(左)與愛因斯坦 (右) 資料圖片

◆杜子航 教育工作者 早年學習理工科目,一直致力推動科學教育與科普工作,近年開始關注電腦發展對社會的影響。

小結

今次介紹了量子力學領域的研究進程,看似只是把兩種原子放在一起,卻是累積了科學家們 數十年努力才得到的突破。相互影響的粒子也可以進入玻色—愛因斯坦凝聚體的狀態,雖然現 在這些粒子之間的相互作用相對較弱,但已為這方面的科學研究開啟了一條新的路徑。以後我 們可以繼續研究如何藉此製造出新的物料,或進一步加強粒子之間的相互影響。

記憶理解應用 三者缺一不可

問題:計算(1+tan1°)(1+tan2°)...(1+tan44°)。

tan1°+tan44° 答案:留意到 $1=\tan 45^\circ = \frac{1}{1-\tan 1^\circ \tan 44^\circ}$ 。整理後得 $(1+\tan 1^\circ)(1+\tan 44^\circ)=2$ 。 類似地,把k°和45°-k°組成一對,都會得到(1+tank°)(1+tan(45°-

k°))=2, 這樣共有22對。故此原式為222=4194304。

解題的關鍵是看到 tan45°=1, 然後可以 將這個45°分成兩部分,用複角公式嘗試整 理分拆後的項,之後發現原式要是配對得 好,可以計算出整數值。

複角公式在課內是高中延伸部分的內容, 上邊的複角公式,用上的是 tan(A+B)= tanA+tanB -tan1Atan44B 。初看時不太好記,但用處很明 顯,就是可以把三角函數裏的角度分拆開, 所以應用範圍很廣泛,值得記住。這些公式 有些情況下考試時會提供,看似不用記住, 但用起來要熟練、變化要想得通,還是要先 記着。

數學也需要背誦

數學的學習上,由於解題中有許多推論過 程,所以學習方法重在理解,那樣比較容易 令人關注數理和算式的變化。學生思考起來 有時會覺得,多問為什麼、找尋定理公式證 明有助學習,不過理解之餘輕視了記憶,學 習方法有偏頗,學習效果就會變差。

初學時發現有用的結果,當然會看些證明 過程,加深了解,再在應用裏求變化,理解 和應用始終會讓人無意中記住這個結果。喜 歡思考的學生有時抗拒先記憶,後理解和應 用,這樣反而學得慢。其實記憶不是用來取 代理解的,記憶、理解、應用三方面並行才 是行之有效的學習方法。

記憶數學算式實際上多多少少都需要理解 能力,因為數學的符號較難記憶,需要相當

水平的理解才可以有效地記住。當你記憶 時,能感覺到算式各方面的聯繫變得密切, 比如哪些方面數理上是一致,或是可以用類 比聯想,又或者符號上有相似的地方。

實際做題應用時,有時發現最好記的部 分實際上是一些特殊例子,而不是原本的 定義或定理。在應用中找尋一些自己覺得 有重要內容的例子,然後圍繞例子聯想, 去記住其他部分,不失為一個增長知識的 好方法。

老師領進門 修行在自身

至於怎樣分辨有用的例子,大概請老師指 導比較有效。老師對數學知識有着融會貫通 的能力,能幫助學生把握重點,這些重點特 別值得記住。在講解例題時學生也往往能夠 反覆聽到,逐漸理解這些重點,在解決問題 時如何發揮關鍵作用。從學生的角度來看學 習的知識還不夠深,一時難以自行分辨哪些 重點會反覆出現,有老師指導能少走一些彎

學生有時聽到不同老師傳授的心得,有的 説理解重要,有的又説記憶重要,或許也有 人説許多事情不用記,在眾説紛紜中,難免 有點迷惑。

筆者總結,學習時記憶、理解和應用並 重,但也要在過程中發現自己擅長的部分, 發揚長處,找尋適合自己的方法,學習才能 有效且高效。

◆ 張志基

簡介: 奧校於1995年成立,為香港首間提供奧數培訓之註冊慈善機構(編號:91/4924),每 年均舉辦「香港小學數學奧林匹克比賽」,旨在發掘在數學方面有潛質的學生。學員有機會 選拔成為香港代表隊,獲免費培訓並參加海內外重要大賽。詳情可瀏覽:www.hkmos. org o

港燈每年舉 辦的「綠色能

◆五育中學的同學以原始的天然陶泥配置太陽能板製作成「冰陶陶」。

港燈供圖

點

合

源夢成真」比 賽,旨在鼓勵年輕一代的創新思維和無限創意, 推動可持續發展的綠色能源解決方案。多年來, 比賽已經幫助學界實現了逾百個「綠色夢工 程」,並支持香港在2050年前達成碳中和的目 標。「綠色能源夢成真2024/25」現已開放報名, 千萬不要錯過這個實現夢想的機會!

港燈將為入圍隊伍提供高達50,000元港幣的種 子基金資助及技術顧問,協助同學們將理想藍圖 呈現出來。得獎隊伍將獲得獎學金以茲鼓勵,而 大專組冠軍隊伍更可到港燈體驗環保發電的工 作,深入了解香港的綠色能源發展。

中學生發明無電冰箱

2023/24學年港燈合計資助 16 支來自中學及大 專的隊伍推行環保項目。中學組冠軍由五育中學 隊伍製作的無電冰箱奪得,其得獎項目「冰陶 陶」是一個無須連接電網的冰箱,該設計讓貧困 地區的人也能夠使用當地材料來製造冰箱,幫助 他們保存食物和藥物。團隊盼藉是次比賽幫助居

住在偏遠貧困地區的家庭,同時向各界強調善用 能源和水資源的重要性。

「冰陶陶」不但有效地冷卻物品,更可減少溫 室效應和節約能源,以無害、無污染的形式下達 至可持續發展為目標。團隊感謝港燈的資助及導 師的協助,讓他們完成理想中的「夢工程」,實 踐環保的同時惠及貧困地區的人民,相當有意

港大學生設計智慧化城市綠洲

而大專組冠軍由香港大學的項目「未來的智慧 休憩公園:OASIS」奪得。團隊盼創造一個智慧化 的公共休閒公園「Oasis」,一個可以在香港廣泛 採用的智慧城市解決方案,為香港的智慧化和節 能作出貢獻。項目結合可持續性、智慧城市及創 意等元素,希望為市民帶來一個獨特的休憩空間 和體驗,在城中找到一片舒適的綠洲。

「綠色能源夢成真」讓同學們以創新科技、創 意藝術或遊戲實踐「夢想」的綠色能源方案,為 香港的可持續發展帶來嶄新的看法。有興趣參加 的同學可掃描以下二維碼提交參加表格及建議 書,截止日期為2024年9月25日。

◆ 港燈綠得開心計劃,致力透過多元化活動,協助年輕一代及公眾人士培 養良好的用電習慣、多認識可再生能源和實踐低碳生活,目前已超過五 百四十間全港中小學校及幼稚園加入「綠得開心」學校網絡。如欲加入 一同學習和推動環保,歡迎致電 3143 3727 或登入 www.hkelectric. com/happygreencampaign o

