邵逸夫獎昨辦頒獎禮 600 政界科學界教育界嘉賓見證盛事

邁向國際教育及創科中心新

頂尖科研人才是全球未來發展不可 或缺的重要力量。為表彰在各自領域 取得突破性成就的科學家,2025年邵

逸夫獎頒獎典禮昨日舉行,向4名傑出科學家頒發天文學獎、 生命科學與醫學獎,及數學科學獎三大獎項,為本港連日的 科研盛事揭開序幕。香港特區行政長官李家超在典禮上致辭 時指,特區政府正持續投放大量資源,全力推動科技創新發 展,並積極鞏固香港作為國際教育樞紐及創科中心的地位。 他提到,本月剛宣布有諾貝爾物理學獎得主將加盟本地大 學,他感謝各位科學獎得主及本地世界級學者的貢獻,並堅 信他們將繼續推動香港邁向國際教育及創科中心新高峰。

●文:香港文匯報記者 陸雅楠、圖:香港文匯報記者 曾興偉

← 年邵逸夫獎天文學獎由約翰·理察·邦德及喬治·艾夫斯塔希歐共一 同獲得,生命科學與醫學獎頒發給沃爾夫岡·鮑邁斯特,數學科學 獎則由深谷賢治奪獎。每個獎項均設獎金120萬美元(約930萬港元)。

昨日在灣仔會展舉行的頒獎禮由李家超主禮,中央政府駐港聯絡辦副 主任羅永綱,及外交部駐港公署署理特派員李永勝,以及約600名來自 政界、科學界及教育界的嘉賓雲集現場,共同見證這項國際科學盛事。

港校吸引世界頂尖學者專才來港

李家超致辭時表示,邵逸夫獎是香港本土創立、享譽國際的科學獎 項,特區政府會繼續與其緊密合作,發揮科學潛力,為建構未來充滿希 望和創新世界作出貢獻。

他自豪地説,香港現時有五所大學躋身世界百強,在最新泰晤士高等教 育(THE)2026年度世界大學排名中,更有六所大學晉身全球前200位,八 所資助大學全部上榜。《2025年世界人才排名》亦顯示,香港總體排名全球 第四,科學學科畢業生百分比繼續居全球首位。這些佳績彰顯了特區政府 在教育及創科政策上的成效。而香港優秀高等院校培育出一代又一代才 華橫溢、勤奮好學的青年,同時亦吸引世界頂尖學者及專業人才來港。

各得獎者先後於典禮分享感言。因為宇宙微波背景輻射研究而共同獲 獎的邦德提到,在獲知得獎時,他和艾夫斯塔希歐正在參加「宇宙微波 背景輻射發現60周年」的活動,慶祝這一宇宙第一道曙光自發現以來 帶來的深遠啟示,這一獲獎時刻意義非凡。

回顧研究歷程,他將之比喻為一場思想與成果的流動盛宴,並慶幸能 與來自不同年齡層、領域內眾多優秀的同道攜手同行,彼此在星空下建 立深厚友誼。

得獎者盼共同守護科學自由

艾夫斯塔希歐憶述,最初投身宇宙微波背景輻射研究時,從未想像過能 達到如普朗克衛星般的精確測量水準,如今在和同伴的共同努力下夢想成 真,令人振奮。他特別感謝家人的理解與支持,尤其是妻子,直言與一位 癡迷科學的伴侶生活並不容易,對家人的包容與陪伴表達由衷感激。

鮑邁斯特提到,其獲獎的冷凍電子斷層成像術,至今已在結構細胞生物 學領域站穩腳跟,助力人類更好地理解細胞內部運作,未來更有望推動新 藥物的開發,但細胞及分子生物學仍待深入探索,而正是對未知的追尋與 意想不到的發現,組成了科學研究的樂趣。他期望,科學無國界的理想能 夠延續,雖然現實世界有種種限制,但應共同守護科學的自由與交流。

深谷賢治表示,能獲此享負盛名的獎項,感到無比榮幸和激動。他直 言,數學家的工作往往難以為外界所理解,即使向街上的人解釋,能被 明白的機會微乎其微。然而他強調,即便如此,大多數數學家依然渴望 被理解和認可,如今自己的研究成果獲得業界肯定,讓他倍感欣慰。

喬

2025年獲獎科學家

(左四)與

家

緬

个勿

密

勉

學

者

HH

H月

天文學獎

得獎者:加拿大理論天體物理研究所暨 多倫多大學教授約翰·理察·邦德 (John Richard Bond) ; 劍橋大學天 體物理學教授喬治・艾夫斯塔希歐 (George Efstathiou)

得獎原因:表彰他們在宇宙學方面的開 創性工作,尤其是對宇宙微波背景輻射 漲落的研究。相關預測已得到了大量地 面、氣球和太空觀測儀器的驗證,從而 精確測定出宇宙的年齡、幾何結構和質 能含量

生命科學與醫學獎

得獎者:馬克斯普朗克生物化學研究所 榮休所長沃爾夫岡・鮑邁斯特(Wolfgang Baumeister)

得獎原因:表彰他對於冷凍電子斷層成 像技術(cryo-ET)的開創性研發和應 用,該三維可視化成像技術使蛋白質 大分子複合物和細胞間隙等生物樣本在 自然細胞環境中的存在狀態得以呈現

數學科學獎

得獎者:北京雁棲湖應用數學研究院及 清華大學丘成桐數學科學中心教授深谷

得獎原因:表彰他在辛幾何學領域的開 創性工作,特別是預見到如今被稱為深 谷範疇的存在,該範疇由辛流形上的拉 格朗日子流形組成。同時,他也領導了 構建這一範疇的艱鉅任務,並隨後在辛 拓撲、鏡像對稱和規範場論方面作出了 突破性且影響深遠的貢獻

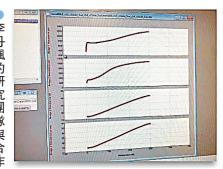
資料來源:邵逸夫獎基金會

在頒獎典禮上,主辦方安排特別環節緬懷 日前逝世的楊振寧教授

香港文匯報訊(記者 陸雅楠) 邵逸夫獎創始成員、諾貝爾獎物理 學獎得主楊振寧本月18日在北京逝 世,享年103歲。在昨日邵逸夫獎 頒獎典禮上,香港特區行政長官李 家超對楊振寧深刻緬懷。他強調 在今屆頒獎禮大家齊聚一堂,慶祝 科學旅程上的新成就之際,更要向 前辈們致以崇高敬意,「一代又一 懷 代,我們站在巨人的肩膀上,展望 科學的未來,不斷鞏固、發展,甚 十日 至突破前人的基礎。」

> 李家超讚揚楊振寧作為首批獲得 諾貝爾獎的華人科學家之一,不僅 重塑現代物理學,更矢志推動中國 科學與教育發展,其對知識的執着 追求和為人類進步付出的不懈努 力,至今令人景仰。他寄語學者們 繼續為科學、文明的發展和合作進 步而努力,開創目標明確、光明燦 爛的未來。

楊綱凱:續傳承楊振寧精神


自邵逸夫獎創立之初,楊振寧一 直擔任關鍵角色。邵逸夫獎理事會 主席楊綱凱昨日提到,楊振寧為獎 項確立宗旨,為其後續發展與國際 聲譽奠定堅實基礎。在當今日益複 雜的世界中,科學與研究的作用尤 為重要。他認為,紀念楊振寧最好 的方式,是傳承對方所開創的事 業,延續其精神,並透過邵逸夫獎 共同慶祝科學進步,向所有推動科 學發展的人士致敬。

目前,邵逸夫獎已表揚全球超過 110位傑出科學家,其中不少更曾 榮獲其他國際著名科學獎項,楊綱 凱表示,欣見證這份科學精神廣泛 傳播,期望繼續凝聚各界力量共創 未來。

發現鎳氧化物薄膜超導體 港城大學者獲嘉許

香港文匯報訊(記者 楊盈盈)超導體研究對全球 能源傳輸與相關產業發展至關重要,並對多項尖端科 技有重大影響。香港城市大學理學院副院長 (研究及 研究生教育) 兼物理學系副教授李丹楓,成功發現全 球首個鎳氧化物 (nickelate) 薄膜超導體,在困擾學 術界三十多年的新類型超導物料領域作出突破,獲 2025年度「亞洲青年科學家基金項目」嘉許,為今年 唯一來自香港的入選者。他接受香港文匯報專訪時分 享道,開創性的研究有很大不確定性,但亦是高風險 高回報的探索。他和團隊曾歷經數年,由希望、質疑 到被否定的波折,最終才憑藉「終極的耐心」取得重 大成果。他期望未來能進一步實現鎳氧化物高溫超導

面的材者 測料成李 ,功 試 可 研 昌 達發研 正 止 呈 電 氧 究 化 團 現 阻 物隊 這 潜 値 供 。 超 與 當 導 合 圖畫時 體

●李丹楓形容,鎳氧化物超導體材料的製備方式如同 層層疊玩具,在選擇取出原子的時候,要保持材料結 構不會因此垮掉 受訪者供圖

應用,為新一代的革命性能源、電力運輸與醫療技術 落地奠定基礎。

超導體是能以零電阻傳導電流的非凡材料,在能 源傳輸、量子計算和磁懸浮技術等領域具有顛覆性 潛力。李丹楓介紹,自上世紀八十年代發現銅氧化 物體系的超導材料以來,科學界一直希望釐清當中 的物理機制,同時探索更多不同種類的材料。過 去,不少人曾提出鎳氧化物體系超導性的可行性, 但遲遲未見實證,有關問題困擾學術界三十多年。

在一片「不可能」聲中,當時在史丹福大學進行博 士後研究的李丹楓卻遵從自身的「物理直覺」,堅持 聚焦鎳氧化物超導材料的工作。他解釋,自己是材料 科學出身,對材料製備有一種感覺,「如果你經常跟 真實材料打交道,就會知道材料本身的複雜性,會有 不一樣的想法與感覺。」過程中他與團隊深耕數年, 曾數度面臨中止壓力,當時合作導師也曾覺得投入太 多、時間太久,認為不值得繼續。

堅持「終極耐心」「死路」找到生機

面對實驗失敗、儀器故障、能力受限與經費不足等 挑戰,李丹楓堅持以「終極的耐心」,在被視為「死 路上的路徑上尋找可能性,最終在那一點點小概率之 中取得重大突破,成功發現首個鎳氧化物薄膜超導 體,「當時凌晨兩點,我正與父母打越洋電話,電阻 曲線驟然歸零。我隨即匯報導師,徹夜往返郵件反覆 驗證,最後導師更半夜開車回實驗室,記錄那歷史性 的一刻!」

成果刊權威期刊《自然》

為確保其可靠性, 團隊其後更在對外保密情況下耗 時八九個月重複驗證,並於2019年獲權威期刊《自 然》刊登。

鎳氧化物超導材料的突破,成為了同類研究的開創 性關鍵,也進一步確立氧化物在超導研究中的特殊地 位。李丹楓解釋,氧化物廣泛應用於現代科技,從手 機天線到矽晶片的二氧化薄層,均是氧化物材料,也

是電子器件與薄膜技術的基石。

「可以説,沒有氧化物的參與,當今許多技術都無 法實現。從這一意義上講,氧化物的功能極為重 要。」因此,他致力於製備更複雜、內涵更豐富的氧 化物薄膜,賦予材料自然界少見的新特性,並藉由這 種「反差」挖掘未知的物理機制

在鎳氧化物薄膜超導體的應用方面,李丹楓計劃探 索更多的高溫超導案例。他以核磁共振儀(MRI)為 例指,現行超導磁體多依賴液氦(約-269°C)維持極 低溫,若能把運作溫度提升至可用液氮(約-196°C) 冷卻的區間,不僅成本可望下降逾九成,亦可緩解液 氦稀缺造成的全球供應壓力,展望更遠,高效率、近 乎無損的電力輸送,甚至可能改寫能源輸配與儲能產 業的版圖。

他表示,超導材料一旦取得突破,將對能源、電 池、電力運輸、核聚變等能源技術與醫療技術等領域 產生革命性影響;而包括航天探測、極靈敏感探測與 量子計算等技術均與超導緊密相關,期望未來對超導 物理認識不斷深化,為相關技術落地奠基,產生重大 社會影響。

倡港加大科研投入 招才宜不拘一格

香港文匯報訊(記者 楊盈盈)2025年未 來科學大獎周今日開幕,作為其中焦點活動 的「亞洲青年科學家基金項目」2025年度會 議於明日舉行,李丹楓是其中的獲獎代表之 一,將與來自世界各地的科學家相互交流激 勵。他期待在跨領域舞台上,以更簡潔明晰 的方式分享其研究,同時了解自身以外的專 業領域,從中得到啟發,「分享帶來的力 量,有時甚至能在關鍵時刻改變你的研究與 心能。|

科學之路孤獨 盼青年保持好奇心

李丹楓寄語有志研究的年輕人應時刻保持 好奇心,認為科學之路相對孤獨,唯有真正 的興趣能讓人長久投入並感受快樂。「當你 在某個領域上,比這個世界上其他數十億人 都懂得更多,那是一種難以取代的幸福。」 他盼望更多青年以好奇為矛、以韌性為盾, 在未知的前沿打一場又一場漂亮的仗。

當前全球進入新一輪的科技浪潮,曾在內 地、香港、歐洲、美國等地做科研的李丹楓 認為,學術自由、創新氛圍、政府政策支 持,以及成熟靈活的制度設計,是香港具備 的最大優勢,「科學研究的核心是人,政府 投入最終依賴對科學家的信任,因此,人員 流動與尊重非常重要。香港在這方面做得相

李丹楓認為,面對人才流動的機遇窗口, 香港應進一步加大科研投入,為科學家提供 更大平台。他建議在香港延攬人才時,對從 事革命性、開創性研究的學者可給予更大包 容與支持,積極網羅可能在未來成為頂尖科 學家的人才,又主張在策略上維持平衡,既 要擁抱當前最前沿的領域如人工智能,同時 也應關注基礎研究,主動尋找其中的機會。

■ ②歡迎反饋。港聞部電郵:hknews@wenweipo.com