加速布局綜合加能站 打造國際氫能示範之都

在全球能源轉型的浪潮下,氫能因兼具清潔與高效,正成為推動碳中和的重要選項。對香港而 言,土地資源有限、交通需求龐大,如何在高效率與低碳排放之間找到平衡,將直接影響「2050 碳中和」目標的實現。在這個講求高效率的應用場景中,時間便是決定使用的因素,因此綜合加 能站就變成理想選項。中國石化(香港)副總經濟師兼零售業務部總經理潘建邦接受香港文匯報 專訪時指出,氫能將成為香港能源結構升級的關鍵一環,而中石化正積極推動從制氫到應用的全 鐽條布局,助力香港打造「油、氣、氫、電」一體化的綜合加能站示範場景,提升綠色能源轉型 效率,協助香港打造「國際氫能示範之都」。 ●香港文匯報記者 孫曉旭、黎梓田

建邦表示,氫能作為一種兼具清潔與高效的新能源,將在香港遊園2000年2011年1 源,將在香港邁向2050碳中和的進程中扮演關鍵 角色。中石化正加快建設加氫基礎設施,探索光伏、 甲醇及氨製氫等技術可行性,並積極與香港特區政府 「氫能源跨部門工作小組」對接,推動氫燃料車應 用,助力香港打造「油、氣、氫、電」一體化的綜合 加能站示範場景,提升綠色能源轉型效率。氫燃料電 池車在運行過程中僅排出純水,不產生碳排放,是名 副其實的清潔能源。加氫方式亦與傳統加油類似,只 需5至10分鐘便可完成,續航力達500至600公里,遠 勝電動車長時間充電的限制。

加氫10分鐘續航600公里 運作效率高

「香港是一個講求高效率的城市,特別是巴士、貨 車、旅遊巴等商用車輛,根本無法停下來等待30分鐘 甚至更久去充電。氫能正好補足電動車在充電耗時方 面的不足。」他強調,氫能不僅適合大型車輛,私家 車、小巴、的士等中小型車輛同樣具備應用潛力。

目前,中石化已於元朗凹頭營運香港首個公眾加氫 站,每日加氫能力達1,000公斤,可滿足多輛巴士及環 衛車運行需求。潘建邦透露,公司亦正逐步探索升 級,包括增設高速充電樁,打造「油、氣、氫、電」 一站式供能的「綜合能源站」。在香港土地資源稀缺 的情況下,「綜合能源站」將是最合理的發展方向, 「市民不用再為去哪裏加油、充電或加氫而煩惱; 個能源站就能滿足不同能源需求。」若能成功推廣 香港有望成為全球能源轉型的示範城市,並在新能源

要取代傳統能源 需採用多元組合模式

香港文匯報訊(記者 黎梓田)對於未來新能源的演 變,潘建邦在訪問中也表示,僅依靠單一新能源或技 術,例如風能或太陽能,無法完全取代傳統能源。因 此,公司認為未來能源轉型要實現碳中和,必須採用 多種能源和技術相結合的模式

氫能因其在高效應用場景和清潔性方面的顯著優 勢,必然會成為能源轉型中的重要組成部分。

潘建邦稱,中石化通過綠電和光伏發電生產氫氣,這 也是目前主要的氫氣生產方式之一。例如,公司在新疆 庫車建有一個年產量達兩萬噸的氫能項目,未來在內蒙 古鄂爾多斯也將建設一個年產量達萬噸級別的項目,這 兩個項目目前均屬全球最大的綠氫項目。此外,在石油 化工煉廠中,公司也會通過傳統燃料裂解生產氫氣,但 這種氫氣 (稱為灰氫) 會產生一定碳排放。

他也進一步解釋,藍氫是通過灰氫生產過程中,結 合碳捕獲而生成的氫氣。雖然生產過程仍會產生碳排 放,但通過碳捕獲技術,碳排放量得以大幅降低,因 此藍氫相較於灰氫更為環保。然而,最理想的仍是綠 氫,因為其生產過程完全不產生碳排放。

氫能靈活應用 可替代化石燃料

香港文匯報訊(記者孫曉旭)氫氣本身燃燒不產生 二氧化碳,被譽為「零碳能源載體」。特別是透過可 再生能源(如風電、太陽能)製造的「綠氫」,可實 現全過程低碳至零碳排放。有專家指出,氫能不僅能 直接替代部分化石燃料,還可用作能源儲存與跨區域 運輸,提升能源系統的靈活性與穩定性,解決可再生 能源出現間歇性問題。

歐美日韓皆出台政策支持研發

多國已將氫能納入國家能源與氣候戰略。歐盟、中 國、美國、日本、韓國等均出台相關政策,支持氫能 技術研發、基礎設施建設與示範應用,加快推動氫能 產業化發展。有業界認為,氫能雖具備廣泛減碳潛

力,但其推廣仍面臨成本、基建與技術成熟度挑戰。 未來,應結合氫能 與可再生能 源、能源儲 H2存、智慧電 網等協同發 HYDROGEN 展,構建多 元低碳能源 體系。

氫能小知識

綠氫、藍氫、灰氫的 區別在於其碳排放量 與生產方式。

領域發揮「超級增值人」的作用。

運輸成本貴 研「本地產本地用」

在氫氣供應方面,中石化計劃於新疆庫車和內蒙古鄂 爾多斯建設萬噸級綠氫項目,屬全球領先規模。潘建 邦指出,雖然內地資源豐富,但輸送氫氣到香港成本 高昂,故公司正研究利用香港部分閒置土地安裝光伏 板,以本地綠電製氫,實現「本地產、本地用」。此 外,中石化亦與中華煤氣緊密合作,探討利用煤氣管 道中氫氣成分,並考慮透過甲醇、氨等氫載體的製氫 方式, 進一步提升氫氣儲運安全性與靈活性。

潘建邦坦言,氫能推廣最大挑戰並非技術,而在於 土地限制、法規完善程度及市民使用習慣的改變 「香港法規嚴謹,新事物需經過謹慎立法與規劃。同 時,市民要逐步從熟悉的燃油或電動車過渡到氫能 車,才能形成市場基礎。」他表示,中石化正協助部 分物流公司和旅遊巴士企業申請示範項目,並與政府

中石化副總經濟師兼零售業務部總經理潘建邦表 示,中石化正加快建設加氫基礎設施,推動氫燃料 車應用 香港文匯報記者孫曉旭 攝

跨部門小組保持溝通,期望逐步拓展氫能應用範圍 加快落地步伐。

談及長遠願景,潘建邦強調,香港「背靠祖國、面 向世界」,完全具備成為氫能「國際展示窗口」的條 件。「若能在香港建立完整的氫能產業鏈,從製氫 加氫到應用一體化,將具備強大示範效應,既能吸引 國際合作夥伴來港觀摩,也可將成熟技術輸出至『一 帶一路』等沿線國家。」他補充,氫能發展不僅有助 香港實現碳中和,亦能帶動本地新能源高增值產業 推動經濟轉型。「氫能在香港仍處於起步階段,中石 化將牽頭推動,讓氫能逐步走進市民生活。」

首階段補貼方案 加氫站建設 最高50%成本補助 區

氫能車輛 豁免首年牌照費

政

府

市

場

培育措施

成立20億港元 「氫能產業投資基金」

此架構凸顯香港從「法 規破冰→基礎建設→市 場應用」的系統性布 局,特別在跨境監管協 調與安全標準創新方 面,為亞洲城市氫能發 展提供重要參照。

志成與中華煤氣合作工地氫能發電 冀年內試運

香港文匯報訊(記者 莊程敏)香港加氫站不 斷增加外,其他氫能基礎設施建設正急速發 展,在香港經營40多年柴油發電機的生產、銷 售以及租賃的志成 (香港) 集團總經理郝桂良 接受香港文匯報訪問時表示,現時中國內地和 香港都非常重視減碳目標,香港計劃到2050年 達成碳中和的目標,當中建築業對低碳或零碳 和可持續能源的需求日益增加,而志成作為全 港最大的工地能源設備供應商,以氫能作為切 入點,與多年來處理氫氣的豐富經驗和能力的 中華煤氣合作,期望在雙方合作之下能互補長 短,加快氫能發電的商業化進程,共同打造綠 色建築環境。

開發監測系統 確保應用安全

志成與中華煤氣的合作備忘錄中提到「低碳 能源技術合作」的具體目標包括:為香港建築 地盤等應用場景,提供氫能的新能源發電一體 化解决方案; 在特定建築項目中進行試點應 用,推進地盤使用氫能發電,減少碳排放。短 期內希望完成技術評估和可行性研究,以及在 本年內啟動首個試點項目。

郝桂良指出,很多人會關注到氫氣的安全問 題,「首先,我們將開發先進的氫氣監測與洩 漏檢測系統,以提升安全保障等級;其次,將 採用新的安全標準與操作規範,確保設備與作 業流程符合產業要求。」在地盤應用方面,已 有具體的試點計劃。在今年10月份,兩個試點 區域進行嘗試,待這些試點正式通過審核後,

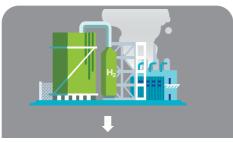
會第一時間與各方分享成果。他強調,中華煤 氣擁有超過160年的氫氣提取與儲存經驗,技 術成熟,能生產高純度氫氣並確保安全儲存與 供應。公司則專注於氫能技術與建築設備,雙 方優勢互補,共同推動氫能發電的商業化,打 造綠色建築環境。

在工業製造方面,目前許多作業都涉及不同 的能源使用。志成(香港)是次計劃與中華煤 氣合作,利用其在將軍澳即將設立的液化天然 氣基礎設施,現場製造氫氣,供不同工業場 景使用。「我們的目標是突出6年機組的特 色,首先與傳統發電機進行比較。傳統發電 機使用柴油,排放廢氣,廢氣中含有有毒物 質,同時產生大量熱和碳排放。而氫能發電 機則使用氫氣,產生電力的同時,僅排放水 蒸氣,溫度約70至80度,可依不同應用場景靈 活調配。|

全面應用需政府推出正式法規

關於何時能全面推行應用,首先要等特區政 府推出相關法規。目前尚未有正式法規允許在 香港使用氫能發電設備。預計今年底法規問 世,屆時公司才能獲得香港的實際應用數據。 公司計劃在法規實施後,盡快投入實際操作。

談到未來計劃方面,公司將持續推動氫能技 術的研發與應用,擴大在港澳及國際市場的合 作,並推動氫能產業鏈的發展。同時,也會積 極參與不同地區的政策制定和產業標準制定, 確保氫能產業的健康有序發展。


移動式氫能發電設備具優勢

郝桂良指,氫能在內地發展已經相當成熟 目前市場上已有其他公司生產氫氣發電機,不 過志成所生產的移動式設計則未在內地見過類 似的產品,這也是公司的一個優勢。郝桂良 説:「若香港的計劃成功,希望將香港的標準 推廣到大灣區及其他城市。內地大型企業已經 在推廣氫能源,並且已經有一些成功案例,一 些大型的氫能源發電站已經建立起來了。作為 新興能源產業,人才方面面臨一定的短缺。志 成將加強與大學和職業培訓機構的合作,培養 相關專業人才。」

●志成(香港)集團總經理郝桂良指,期望與 中華煤氣合作,以加快氫能發電的商業化進 香港文匯報記者郭木又 攝

灰氫、藍氫、綠氫的區別在於其碳排放量與生產方式

灰氫 (Grey Hydrogen):以天然氣、煤炭 等化石燃料進行蒸汽重組製氫。製氫過程 中仍會排放二氧化碳,碳排放高。成本較

藍氫 (Blue Hydrogen):同樣使用化石燃料製氫,但 在過程中會將排放的二氧化碳進行捕集與封存 (CCUS)。碳排放強度較低,但碳捕捉和封存技術 會增加成本。

綠氫 (Green Hydrogen): 利用再生能源 (如太陽能、風能) 所產生的電力, 通過 電解水製氫。製造過程基本零碳排放,對 環境最為友善,但成本目前相對較高。